IC for DC Motor Control

Monolithic IC MM1038

Outline

This IC is used to control the revolution rate of motors which can be controlled by low voltages. It can be used to configure a high-precision FG motor using few external components. In particular, a unique new circuit design with improved low-voltage operating characteristics enables configuration of sets such as headphone stereos with auto-reverse functions which are unaffected by power supply voltage drops when the motor is reversed, making them ideal for speed control of low-voltage DC motors.

Features

- 1. Operation at low voltages possible
- 2. Broad power supply voltage range
- 3. Small input current
- 4. Few external components, small package
- 5. Speed is easily changed over a wide range; accommodates two-speed operation

Package

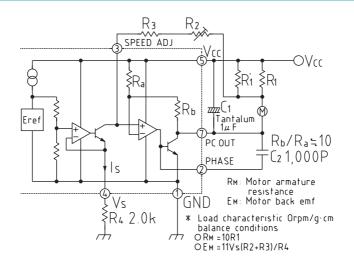
SOP-8A (MM1038AF) SOP-8D (MM1038CF)

Absolute Maximum Ratings

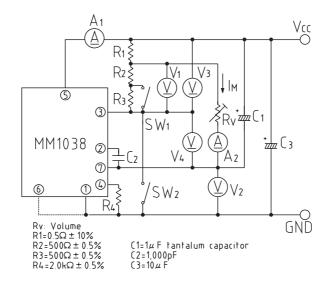
Item	Symbol	Ratings		Units	
Operating temperature	Topr	-10~+60		$^{\circ}$ C	
Storage temperature	Tstg	-30~+125		°C	
Power supply current	Vcc	-0.3~10		V	
Output current	IL	700		mA	
Power consumption I *1	Pd I	Ta=25°C	Ta=40°C	mW	
		340	290	111 VV	
Power consumption II *2	Pd II	Ta=25°C	Ta=40°C	mW	
		690	580	111 VV	

*1: Power consumption I: Unit

*2: Power consumption II: when mounted on board


(55.0 × 20.0 mm, t=0.8 mm, copper area 30%)

Electrical Characteristics (Except where noted otherwise, Ta=25°C)


Item	Symbol	Measurement conditions		Тур.	Max.	Units
Consumption current	Id	A1		1.75	4.0	mV
Startup current	<u>Ims</u>	A2 when Rv is 1.5Ω				mV
Reference voltage	VS	A1 when SW1 is off		100	110	mV
Reference voltage fluctuation I	⊿VS1	VS fluctuation rate for Vcc between 1.5 and 3.5 V with Vcc=3.0 V as reference		0.1	0.5	%/V
Reference voltage fluctuation II	\triangle VS2	VS fluctuation rate for IM between 25 and 200 mA with IM=100 mA as reference		0.05	0.05	%/mA
Reference voltage fluctuation III	⊿VS3	VS fluctuation rate for Ta between –10 and as reference 60 °C with Ta=25 °C		0.01		%/°C
Output saturation voltage	VoSAT	V2 SW2 on, when IM is 200mA		0.2	0.3	V
Bridge ratio	K	V4/V3	9.5	10	10.5	
Bridge ratio fluctuation I	⊿K1	K fluctuation rate for Vcc between 1.5 and 3.5 V with Vcc=3.0 V as reference		0.1	0.2	%/V
Bridge ratio fluctuation II	⊿K2	K fluctuation rate for IM between 25 and 200 mA with IM=100 mA as reference		0.01	0.06	%/mA
Bridge ratio fluctuation III	⊿K3	K fluctuation rate for Ta between –10 and 60 °C with Ta=25 °C as reference		0.01		%/°C

Measurement conditions: Except where noted otherwise, Vcc=3.0 V, IM=100 mA, SW1=on, SW2=off

Block Diagram

Measuring Circuit

